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Abstract. Physiologically it is likely that excitatory and inhibitory neurons are rather clearly 
distinguished or, in other words, each neuron has in most cases a unique excitatory or 
inhibitory property (the Dale hypothesis). To study the consequence of the physiological 
constraint, we propose a learning rule for neural networks which incorporates the constraint. 
Then the distribution of the metastable states is calculated and it is found that the retrieval 
states form a much larger group in the proposed model than in the Hopfield model. We 
also study the process of retrieval by considering the statistical dynamics of the overlaps. 
The result suggests that excitatory neurons and inhibitory neurons are preferably balanced 
in number if the attraction basins of the stored patterns are to be sufficiently large. 

1. Introduction 

Apart from fruitful applications of neural networks to engineering or computer scientific 
problems, attempts have been made to understand the complex performances of the 
human brain through neural networks (Eccles 1977, Kohonen 1977, Virasoro 1988). 
If we try to simulate the complex structure or functions of the brain by means of neural 
networks, the implications of many physiological constraints on biological nervous 
systems must be understood. There have been various attempts to accommodate 
physiological constraints into neural network models (Amari 1977a, Clark 1988, 
Shinomoto 1987, Treves and Amit 1989) though it has not yet been fully clarified 
whether such physiological constraints play essential roles in biological nervous systems 
or are simply regarded as neuro-chemically inevitable constraints. Here we study the 
metastable states of a simple neural network subject to a specific physiological con- 
straint, namely the Dale hypothesis, which claims that each neuron is either excitatory 
or inhibitory. 

A neural network with the Dale hypothesis was studied by Shinomoto (1987) and 
it was reported that the network acquires a sort of ‘cognitive ability’. We examine the 
effect of incorporating the physiological constraint from different points of view. After 
proposing a simple neural network model which follows the physiological constraint, 
we calculate the distribution of the metastable states for the model. The simple 
realisation of the learning rule to incorporate the constraint makes it possible to carry 
out the statistical calculations involved. Such distributions were calculated for the 
Hopfield model (Gardner 1986) and the asymmetrically diluted Hopfield model (Treves 
and Amit 1988) and it was found that there exist two groups of the metastable states: 
one forms around the original patterns and the other around spin-glass type configur- 
ations. We find that the former group consists of the retrieval states and becomes much 
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larger in the proposed model than that in the conventional Hopfield (1982) model, 
which is characteristic of the model incorporating the constraint. Note that the purpose 
of the present paper is not to construct a realistic model of biological nervous systems 
but to understand possible effects of the physiological constraint. Therefore we define 
a minimum model which satisfies the physiological constraint so that we can approach 
it mostly through analytical calculations. 

The paper is organised as follows. In section 2 ,  the learning rule which incorporates 
the physiological constraint is presented and the model is defined. In section3, the 
number of the metastable states is calculated and the results are shown for various 
cases. Detailed calculations are shown in the appendix. In section 4, the statistical 
dynamics of overlaps is discussed to see the features of retrieval process. Concluding 
remarks are given in section 5 .  

2. The model 

We propose a learning rule in which the above physiological constraint is taken into 
account in a simple manner. We first label each neuron according to its excitatory or 
inhibitory nature. Let tl, be 1 ( -1)  if the j th  neuron is excitatory (inhibitory). Then 
the learning of patterns (57) ( i  = 1 ,  . . . , N, p = 1 , .  . . , p )  to the synaptic couplings is 
defined by 

l P  
T J = N  c ‘;5:57 ‘f: = + VJ67tT  ‘ (1) 

p = l  

Since E :  # 0 when the product of the signal tyt: and T~ is positive, only positive 
signals are learned by an excitatory neuron. Similarly, only negative signals are learned 
by an inhibitory neuron. Thus the synaptic couplings generated by ( 1 )  satisfy the 
physiological constraint under consideration. 

The learning rule TI = 28( T I )  T:, where T:  stands for the conventional Hebbian 
coupling (l/N)Z,, .$?,$‘, was adopted by Shinomoto (1987) to generate the synaptic 
couplings which respect the physiological constraint. We call this learning rule ‘all or 
nothing learning’ in the present paper. Advantages of choosing the present couplings 
are the following two points. ( i )  It suits an intuitive image of learning as a sequential 
process since the synaptic couplings are modified every time when a memory is stored 
by the network. (ii) T,] is simply written as 

with cy = p / N ,  which makes any statistical mechanical calculations rather easier. Note 
that TI is symmetric if both the ith and the j th  neurons are excitatory or inhibitory 
and otherwise TI is asymmetric. 

The memory retrieval process is an ordinary synchronous process, i.e. spin S,( t )  is 
updated according to 

TJ = Ty+cya7] ,  

One may think that the above process is not realistic. However, as mentioned pre- 
viously, we are not aiming at constructing a realistic model. What we are interested 
in is the characteristic properties of the neural networks whose unit neurons are specified 
uniquely as excitatory or inhibitory. Therefore we leave the retrieval algorithm 
unchanged to see only the results of the physiological constraint. 
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3. Distribution of the metastable states 

We calculate the number of the metastable states at the Hamming distance Ng from 
a pattern {&}. Since { S i }  is a fixed point of the updating algorithm (2) if 

is satisfied for any i, the number N,, of the metastable states with the local fields h, 
whose sizes are greater than a positive value h is given by 

(4) 

where the trace is taken over the states separated from (61) by the Hamming distance 
Ng and ( . . . ) stands for quenched averages over the random patterns (6:) ( p  # r) .  
Using the following integral representation of the 8 function: 

O ( x - a ) =  1- -X du [az*exp[iu(T-x)] 21r 

equation (4) can be written as 

We evaluate the right-hand side of (5) in the limit that N goes to infinity keeping a 
fixed. We show the details of calculations in the appendix and only present the results 
obtained. Inserting a parameter y in front of the second term of E :  to connect the 
present model smoothly with the Hopfield model (i.e. y = 1 yields the present physio- 
logical model while y = 0 yields the Hopfield model), we calculate N,, to obtain 

Nms=exp(NF(g, a, r, 4 ) )  (6) 

F k ,  a, r, q ) = g ( l - q )  In(O(s+))+( l -g-r+gq)In(O(s- ) )  

+gq In(O(t+))+(r-gq)  In(O( t - ) )+a[b+&ln  a- ;+( l -b) ' /2a]  

- g In g - (1 - g)  In( 1 - g)  (7)  

where 

h * (1 -2g) + a ( b  - 7 )  h * (1 -2g) + a ( b  + y )  
t ,  = 6 6 s, = 

and saddle points are to be substituted for the two parameters a and b. To derive the 
above expression, the number of excitatory neurons in the network has been assumed 
to be rN (0 < r < 1) and the number of excitatory neurons taking wrong spin states 
(i.e. Si # 61) to be Ngq ( O <  gq < r ) .  It is necessary to give the distance and the direction 
of { S i }  from ((1) by g and q, respectively to specify the state { S i } .  

Equations (6) and (7) yield an upper bound for the number of metastable states 
(Gardner 1986). We see that the metastable states exist only for the regions of the 
parameters in which the function F takes positive values. If F takes negative values, 
there exist no metastable states for such regions of the parameters. Note that the first 
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four terms in the expression of F give negative contributions while the next two terms 
give positive contributions. Since t ,  > s, for any allowed values of the parameters, 
we see that F tends to be positive as q becomes smaller. 

The function F is evaluated numerically and the results are shown below for various 
cases. Hereafter h is set equal to 0. We first show the cases of the Hopfield model 
for comparison. We recovered the results obtained by Gardner (1986). In figure l ( a ) ,  
F is shown as a function of g when (Y = 0.05 and 0.1. An important point is that there 
exist two distinct positive bands: one is around g = 0 and the other is around g = t .  
The former band corresponds to a set of metastable states which are very close to the 
original pattern but not completely equivalent to it: the closest metastable state in the 
band has very small but non-vanishing Hamming distance 

from the original pattern. We may call these states the retrieval states. On the other 
hand, the later band corresponds to a set of metastable states around the spin-glass 
type configurations which were found in the thermodynamical calculations (Amit et 
a1 1985a, b, 1987) and is much broader than the former. 

Figure 1. The function F for the Hopfield model ( a )  and for the present model ( 6 )  with 
equal numbers of excitatory and inhibitory neurons. The number of the metastable states 
is given by exp( N F ) ,  and therefore the metastable states exist only for the parameter 
regions in which F takes positive values. In the case of the Hopfield model, the full curve 
is for a =0.05 and the broken curve is for a =0.1. The height of the former peak is less 
than 0(10-*). For the present model, the case when a = 0.05 and 9 = 0 is shown. 

Now we show the function F for the present model. For the time being, we set q 
equal to 0 and consider the network with equal numbers of excitatory and inhibitory 
neurons. In figure l ( b ) ,  F is shown when a = 0.05. The remarkable point is that the 
positive band around g = 0 becomes much broader and higher than that in the Hopfield 
model shown in figure l ( a ) ,  or equivalently, the number of retrieval states for the present 
model increases significantly compared to that for the Hopfield model when N > O( lo’). 
This feature is seen for any values of a for which the network behaves as a good 
memory and is characteristic for the neural network whose unit neurons are uniquely 
assigned to be excitatory or inhibitory. The immediate implication of this result is that 
each pattern is stored as a huge set of patterns almost identifiable to the original pattern 
and consequently identifiable to each other. We will briefly discuss its possible 
physical or biological implications later. Note also that the number of uncorrelated 
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metastable states increases slightly. Therefore it is not always true that the number of 
spurious states decreases for neural networks with asymmetric couplings. (See also 
Parisi 1986, Feigelman and Ioffe 1986, 1987, Treves and Amit 1988.) 

It is known that the gap between the two positive bands disappears if a is larger 
than some critical value a,. For the Hopfield model, a ,  was estimated to be 0.113 
(Gardner 1986). Setting q = 0, i.e. observing the direction in which most of the retrieval 
states exist, we obtain the following value of a ,  for the present physiological model 
when r = 0.5: 

a, = 0.0792. 

This value is not very sensitive to the parameter r. It is natural to have a smaller value 
of a,  since only half of the neurons are used to store each pattern on average. It is 
noted that naively a,  is expected to be one half of that for the Hopfield model but 
the value obtained is not so small. This decrease of critical memory storage capacity 
cannot be serious for biological nervous systems like the brain since they consist of 
an enormous number of neurons. 

As mentioned previously, F tends to be negative as q increases. In figure 2, F is 
shown, as an example, for a = 0.05 when q = 0.275. The band of retrieval states almost 
disappears while that of the uncorrelated metastable states is almost unchanged. Thus 
patterns are stored in the present network by releasing spins at very small portions of 
the inhibitory neurons. 

Figure 2. The function F for the physiological model 
with equal numbers of excitatory and inhibitory 
neurons when a = 0.05 and q = 0.275. 

Figure 3. The function F for a = 0.06 and q = 0 when 
the number of excitatory neurons and that of inhibi- 
tory neurons are not matched. The broken curve is 
for the excitatory-dominant case ( r  = 0.8) and the 
full  curve is for the inhibitory-dominant case ( r =  
0.2). 

Finally, we show some cases in which the numbers of excitatory and inhibitory 
neurons are not equal. Figure 3 shows the function F in two cases, r = 0.2 and 0.8, 
when a = 0.06 and q = 0. The two bands, especially the one corresponding to the 
retrieval states, are observed to grow as the number of inhibitory neurons increases. 
This seems to be natural, since, as mentioned above, most spins which are opposite 
to those of the original pattern are observed at the inhibitory neurons in the retrieval 
states. Therefore if the number of inhibitory neurons increases, the number of the 
retrieval states is expected to increase. However, this increase of the retrieval states 
does not necessarily lead to an improvement in the ability of memory retrieval in 
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inhibitory-dominant neural networks. Suppose that inhibitory neurons largely exceed 
excitatory neurons in number. Then the retrieval sequences easily enter a mode in 
which uniform configurations { 1,) and { - 1 appear alternately. On the other hand, 
if excitatory neurons exceed inhibitory neurons, the sequences mostly end up  in one 
of the uniform configurations. Thus, to keep the attraction basins of the retrieval states 
large enough compared with those for the uniform modes, the numbers of excitatory 
and  inhibitory neurons are to be reasonably balanced. This point will be studied 
further in the next section. 

4. The process of retrieval 

To see the effect of incorporating the Dale hypothesis on the retrieval dynamics in 
some detail, we discuss statistical dynamics of overlaps (Amari 1977b, Kinzel 1985, 
Shinomoto 1987) for the present model. The above intuitive argument suggests that 
it is necessary to consider two kinds of overlaps: one is the overlap of the temporal 
pattern {SI} with the stored patterns {tf} and the other is that with the uniform mode 
{li}. Thus we introduce 

Next we define the referenced inputs uf and U: as follows: 

uf = [fh,  U: = l , h ,  (9) 

with hi given in (3). Then the overlaps at time t +  1 can be written in terms of the 
referenced inputs at time t as 

The trick is to introduce an  ensemble of a set of patterns satisfying 

CSPSf) = 8,,8, ([PS,) = m,Spa8!, ( S I )  = m, (53 = mp+8p,, (11) 
where ( . . . ) stands for an  average over the ensemble and  m,, is the overlap between 
{[f} and { I t } .  In other words, we consider the ensemble over which the overlaps m,, 
m, and m,, take some fixed values. Note that the correlations among different sites 
and  different patterns are neglected in the present approximation. Evaluating the mean 
values and  the variances of uf and U: over the ensemble by using ( l l ) ,  we obtain 

zip = (uf)  = m, ii '=(u:)=p(2r--l)m, (12) 

and  

((U? - ti@)*) = a + p 2 q 2 m :  

((U: - U+)*) = a + m i  

( ( u t  - ii' )( U: - i i+))  = p q m ,  m, 

where we have neglected the terms of O( 1 /  N ) .  
Furthermore, when N goes to infinity, we can replace the R H S  of (10) with the 

average of sgn( u f )  or sgn( U:) over a two-dimensional Gaussian distribution p (  u p ,  U') 
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whose means and variances are given by ( 1 2 )  and (13): 

exp[ - f (  U - u ~ ) ~ M  ( U - u o ) ]  

255 

( 1 4 )  

where 

U = (UP, U g  = ( l ip ,  

Introducing a vector notation to the overlaps in an obvious manner, we consider 
a nonlinear map G from m ( t )  to m ( r S 2 ) .  Note that we consider the map for two 
time steps in order to take account of the uniform mode of period two appearing in 
inhibitory-dominant cases. Then it is a straightforward calculation to obtain the 
linearised map a C / a m  around a trivial fixed point m = 0 of the map G. 

Now we find that the fixed point at the origin m = O  is stable if the conditions 

7ra 7Ta 

are satisfied. If one of the above inequalities is not satisfied, a couple of stable points 
appear on the corresponding instability axis through the pitchfork bifurcation and the 
origin turns into a saddle point. Since the bifurcation scenario with the present choice 
of the learning rule is essentially the same as the one with all-or-nothing learning, we 
do not repeat it here, but only compare the above stability conditions with those 
obtained for the all-or-nothing learning (Shinomoto 1987):  

1 2 p (  1 - 2r)’ 
-<1 < 1 .  
7Ta r a  

We see that the origin stays unstable in the m, direction twice as long in the present 
model as a increases, which is preferable for the memory retrieval. This is natural 
since less information on the patterns is lost in the learning rule ( 1 )  than in the 
all-or-nothing learning. In short, the present learning rule teaches each pattern more 
firmly. On the contrary, the origin turns stable rather easily in the m ,  direction. This 
is interpreted as follows. In the all-or-nothing learning, half of the synaptic couplings 
T, are expected to vanish for any values of the parameter r if random patterns are 
learned. The present learning rule turns most of these vanishing couplings into negative 
or positive ones according to the inhibitory or excitatory nature of the corresponding 
neurons. Therefore the generated synaptic couplings develop an excitatory or inhibitory 
dominant nature more remarkably if the two types of neurons are not balanced in 
number. Thus the retrieval sequences comparatively easily enter into the uniform 
modes. 

If the attraction basins of the uniform modes are desired to be reasonably small 
compared to those of the retrieval states, the second inequality of the stability conditions 
in ( 1 7 )  should be followed strongly. This requires a rather exact balance between 
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the numbers of excitatory neurons and inhibitory neurons. More precisely, the follow- 
ing inequality is to be obeyed: 

; (1 - f) < r <; (1 +;) . 

Though the above argument is not exact, it is desirable that r is close to 4 when p is large. 
The inequality (18) follows only when we require rather wide attraction basins of 

the retrieval states. Therefore if input patterns which are not very close to the stored 
patterns are not to be identified with any one of them, r need not be -4. Then the 
unbalance of excitatory and inhibitory neurons in number makes it easier to drive 
retrieval sequences into the uniform modes from the input patterns not close to the 
stored patterns. This performance, which was called ‘cognitive ability’ (Shinomoto 
1987), is a natural consequence of assigning unique excitatory or inhibitory character 
to each neuron. 

5. Concluding remarks 

We found that the number of the metastable states correlated to the stored patterns 
(i.e. the number of the retrieval states) increases remarkably at the cost of less critical 
storage capacity if each neuron has a unique excitatory or inhibitory character. In  the 
retrieval states, most of spins opposite to those of the corresponding original pattern 
are observed at the inhibitory neurons. It will be interesting to study the possible 
implications of incorporating the Dale hypothesis in the retrieval dynamics of neural 
networks. The present choice of the learning is not sufficiently asymmetric to produce 
limit cycles in the retrieval dynamics. However, suppose that the degree of asymmetry 
is somehow increased. Then the dynamical structure of the network becomes fairly 
rich: the limit cycles will appear (Coolen and Ruijgrok 1988, Shiino et af 1989). It 
has also been argued that asymmetry may open chaotic trajectories (Parisi 1986). Then 
we may expect that there exist rich chaotic trajectories in the biological nervous systems 
since huge numbers of the metastable states around the stored patterns may provide 
a variety of branches for the retrieval trajectories. Actually we obtain asymmetric 
neural networks which exhibit chaotic retrieval dynamics under finite external (thermal) 
noises if the Dale hypothesis as well as time delay is incorporated (Fukai and Shiino 
1989). The models and their retrieval dynamics will be reported elsewhere. 
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Appendix 

We show the derivation of ( 6 )  and (7) in the text. The starting equation is the R H S  of 
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( 5 ) ,  which is written as 

where we have assumed, without any loss of generality, that the first Ng neurons are 
in opposite spin states to the pattern {l:}, while the others are in the correct spin states: 
th i s impl ies tha t&,=l  f o r i = l ,  ..., N g a n d - 1  f o r i = N g + l ,  . . . ,  N. 

Noting that 

exp [ -ia (T ’Ix,) (7 ’JTJ)] 

we can decouple each spin variable from the others. Now we take the average over 
patterns {[y} and the trace over {SI} to obtain 

N 
xexp i C x l ~ , + i ( l - 2 g )  E,x,+ lncosh(m,-im,x,) 

+C In cosh(f7, - izx,)+ia C x , ( l +  77,) 

( 1  I = I  P f r.1 

I , 

- N C m,rii, - a -‘z2 - Ng In g - N ( 1 - g ) In( 1 - g ) (‘46) 
F f r  

Expanding In cosh, we obtain the Gaussian integrals for m,, fi,, z and 2. We find 
that the integrations of z and i contribute only to the next leading order in N and 
thus are negligible. The integrations of m, and m, are evaluated as 

F f r  n dmfi 2 ~ /  dApexp[iNm: N -( i x i+  N) m,m, -: (5: x:) mc]  

= exp{ -:aN In [ + xf + (1 +& x,) ’I). 
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After introducing new variables 

1 
B = - Z x ,  

1 A = - Z x f  
N i  N ,  

by using 6 functions with their integral forms, we substitute (A7) into (A6). Then we 
perform the integrations of x, and obtain 

d a d A  d b d B  
h i Js;; 2 r / N  2 r / N  4a I 
I n d7, I - 5 - exp( [ r ,  + b + a( 1 + 7,) + (1 - 2 g ) ~ , ] ~  

+ N { - f a  ln[A+ (1 + B)’] + aA - bB - g In g - (1  - g )  In( 1 - g ) }  . 

(A9) 

Now the integrations of A and B may be evaluated by the saddle point approxima- 
tion. Defining the parameters r and q as given in the text, replacing the variables a 
and b as a / 2 a  + l / a  and b + a -, ba and inserting y in front of 71 in (A9), we finally 
obtain the desired equations (6) and (7 ) .  

) 
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